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Generating an inflated shape from a sketched curve [2, 7, 6, 3] leads to the following problem:

Problem Given a planar region Ω ⊂ R2, specified by its boundary curve, generate a height
field z(x, y) defined on Ω, such that z is zero on ∂Ω and the graph of ±z forms a “nice”
smooth surface.

To get the obvious out of the way, it is clear that away from the boundary, z must be smooth.
On the boundary, smoothness requires that the surface normal be in the xy plane (otherwise,
there is a crease).

Solution We have observed that solving the Poisson equation ∇2h(x, y) = −4, subject to
h(∂Ω) = 0 and setting z =

√
h produces very nice results (Figure 1) and is relatively fast

and easy to compute. We are curious as to why the results look good.

Our method clearly satisfies the conditions above: smoothness of z is obvious. The fact that
the derivative of the square root function approaches infinity as its argument approaches
zero ensures that as long as the gradient of h does not vanish on ∂Ω, the tangent plane to
the surface (x, y, z(x, y)) on ∂Ω is orthogonal to the xy plane.

Special Cases Let’s consider two special cases that we can solve analytically. If Ω is a unit
disk, the function h = 1−x2−y2 satisfies the Poisson equation and the boundary conditions
and the inflated surface ±

√
1− x2 − y2 is a sphere. If Ω is the region −1 ≤ y ≤ 1, the

function h = 2− 2y2 is the solution and the inflated surface is a cylinder whose cross-section
is an ellipse with major radius

√
2 and minor radius 1.

RMS Distance The method originally came about from the following consideration: the
puffier parts of a pillow are farther away from the boundary. Taking z to be a distance
field from ∂Ω would not work because it would not be smooth at the medial axis (and
at the boundary because the gradient of z would be finite). So to find z(x, y), instead
of the minimum distance to ∂Ω, let’s take the mean distance, but weigh it by generalized
barycentric coordinates of (x, y) with respect to ∂Ω.
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Figure 1: The curve (left) is inflated into a surface (middle). On the right is a rotated view
of the result.

Given a function f : ∂Ω→ R, define fC : Ω→ R to be the extension of f to Ω’s interior using
generalized barycentric coordinates C (so use fH for harmonic coordinates [4] and fM for
mean value coordinates [1]). In particular, at a point p ∈ Ω, whose coordinate with respect
to a point b ∈ ∂Ω is Cp(b), f

C(p) =
∫
∂Ω
f(b)Cp(b) db.

Let dx0,y0 : ∂Ω → R be the distance from points on the boundary to (x0, y0). A possible
scheme is then z(x, y) = dCx,y(x, y). This is nice and smooth in the interior, but has a
crease along the boudary. Additionally, it is somewhat expensive to compute, because a
different interpolant needs to be computed for every point. A square root would fix the
smoothness problem, and if z is to have distance units, we get the modification: z(x, y) =√(

d2
x,y

)C
(x, y). Expand d2

x0,y0
= (x − x0)2 + (y − y0)2 = x2 + y2 − 2xx0 − 2yy0 + x2

0 + y2
0.

Because generalized barycentric interpolation is linear and preserves linear and constant

functions, we get:
(
d2
x0,y0

)C
(x, y) =

(
d2

0,0

)C
(x, y) − 2xx0 − 2yy0 + x2

0 + y2
0. Therefore, z =√(

d2
0,0

)C
(x, y)− x2 − y2. If we choose harmonic coordinates, to compute z, we only need to

solve the Laplace equation for
(
d2

0,0

)H
. It has the form ∇2(h+x2+y2) = 0 with the boundary

condition (h+x2+y2) = x2+y2 on ∂Ω. This is equivalent to our original equation. Mean value
coordinates can also be used, but the computation is slower (computing the interpolation is
no longer a single linear solve) and the surfaces do not look as nice.

Known Energy Functionals The standard method for generating fair surfaces is by
minimizing an energy functional. For example, if κ1 and κ2 are the principal curvatures on
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a surface S, the surface’s Willmore energy is defined to be
∫
S
(κ1 − κ2)2 dA. The variation

of curvature (MVC) energy [5] is
∫
S

(
dκ1

de1

)2

+
(
dκ2

de2

)2

dA, where e1 and e2 are the principal

curvature directions. The case when Ω is a disk does not rule out either of these energy
functionals: both are zero for a sphere. However, the second special case when Ω is a
strip rules out both: the cross-section of the cylinder that minimizes MVC energy is a circle,
while the cross-section of the cylinder that minimizes Willmore energy is a minimum bending
energy curve and is not an ellipse. Our elliptical cross section rules out many variations of
the above functionals: translational symmetry implies that the cross section is all that can
be optimized and there are not many different curve energy functionals.

Our Energy Functional We have found that our surface minimizes∫
Ω

‖∇(x2 + y2 + z2)‖2dA

over possible values of z (the gradient is taken with respect to x and y). Let h = z2 and let
h0 be a perturbation, with h0(∂Ω) = 0. The variational derivation is:

(substitute h) 0 =
∂

∂ε

∣∣∣∣
ε=0

∫
Ω

‖∇(x2 + y2 + (h+ εh0))‖2dA

(expand product and remove zero terms) =
∂

∂ε

∣∣∣∣
ε=0

∫
Ω

2ε∇h0 · ∇(x2 + y2 + h)dA

(differentiate and divide by 2) =

∫
Ω

∇h0 · ∇(x2 + y2 + h)dA

(apply divergence product rule) =

∫
Ω

∇ · (h0∇(x2 + y2 + h))dA−

−
∫

Ω

h0∇2(x2 + y2 + h)dA

(apply divergence theorem and simplify) = −
∫

Ω

h0(4 +∇2h)dA

The fundamental lemma of variational calculus therefore implies that 4 +∇2h = 0, which is
the equation we solve.

Interestingly, the energy functional is not invariant to the translation of Ω, although the
shape of its minimum clearly is (being the solution of a translation-invariant equation).
The functional is also strongly tied to the surface parameterization: if we let S(u, v) =
(x(u, v), y(u, v), z(u, v)) with (u, v) ∈ Ω and optimize

∫
Ω
‖∇(S · S)‖2dA subject to the con-

straint that on ∂Ω, S = (u, v, 0), there is a continuum of critical points, including a flat one
(z = 0). Perhaps an additional condition can be found that generalizes the optimization to
parametric surfaces, not just height fields.
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